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 RESEARCH ARTICLE

 AMERICAN JOURNAL OF BOTANY

 Euphorbia plant latex is inhabited by diverse microbial
 communities1
 Manjula Gunawardana2, Embriette R. Hyde3, Sean Lahmeyer4, Brian L. Dorsey4, Taylor P. LaVal2, Madeline Mullen2, Jennifer Yoo2, Rob

 Knight3,5, and Marc M. Baum2,6

 premise OF the STUDY: The antimicrobial properties and toxicity of Euphorbia plant latex should make it a hostile environment to microbes. However,

 when specimens from Euphorbia spp. were propagated in tissue culture, microbial growth was observed routinely, raising the question whether the latex

 of this diverse plant genus can be a niche for polymicrobial communities.

 METHODS: Latex from a phylogenetically diverse set of Euphorbia species was collected and genomic microbial DNA extracted. Deep sequencing of bar-

 coded amplicons from taxonomically informative gene fragments was used to measure bacterial and fungal species richness, evenness, and
 composition.

 KEY RESULTS: Euphorbia latex was found to contain unexpectedly complex bacterial (mean: 44.0 species per sample; 9 plants analyzed) and fungal (mean:

 20.9 species per sample; 22 plants analyzed) communities using culture-independent methods. Many of the identified taxa are known plant endophytes,

 but have not been previously found in latex.

 CONCLUSIONS: Our results suggest that Euphorbia plant latex, a putatively hostile antimicrobial environment, unexpectedly supports diverse bacterial and

 fungal communities. The ecological roles of these microorganisms and potential interactions with their host plants are unknown and warrant further
 research.

 KEYWORDS culture-independent analysis; Euphorbia; Euphorbiaceae; latex; microbial communities; microbial ecology; sap

 Some 20 000 species from over 40 angiosperm families exude the
 sticky, often white emulsion known as latex (Agrawal and Konno,
 2009), which in Hevea brasiliensis (Euphorbiaceae) is famously
 useful to humans in the form of rubber. Latex is not known to

 contribute to primary functions of the plant, but rather has been
 shown to play a defensive role from microbial infection (reviewed
 in Agrawal and Konno, 2009). The genus Euphorbia (Euphorbiaceae)
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 is a cosmopolitan clade of ca. 2000 species that comprises an im-
 pressive array of growth forms including herbs, shrubs, trees, geo-
 phytes, and multiple succulent forms. Despite this morphological
 diversity, the genus is defined by one primary characteristic: spe-
 cialized, highly reduced, flowerlike inflorescences (pseudanthia)
 (Horn et al., 2012; Yang et al., 2012; Dorsey et al., 2013; Peirson
 et al., 2013; Riina et al., 2013). All members of this genus are lactif-
 erous, producing a white latex that contains a number of second-
 ary metabolites (Jassbi, 2006; Pintus et al., 2010) and can cause
 dermatitis and severe irritation to eyes (Evans and Schmidt, 1980;
 Lin, Marshall, and Kinghorn, 1983; Seigler, 1994; Basak et al, 2009;
 Shlamovitz et al., 2009). Euphorbia latex has also been shown to
 possess moderate antimicrobial properties (Sumathi et al., 2011;
 van Deenen, Prüfer, and Gronover, 2011) and, as for other latex
 producers, is thought to provide protection from herbivores
 (Bernays, Singer, and Rodrigues, 2004). While there is evidence
 of microorganisms infecting Euphorbia laticifers (da Cunha et al.,
 2000), the composition and function of latex suggests that it
 would constitute an inhospitable environment for microorganisms
 (Salomez et al., 2014).
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 Endophytes, microorganisms living in plant tissue without caus-
 ing disease, occur in nearly all species of plants investigated and can
 play a number of functional and ecological roles (Rodriguez et al.,
 2009). In a recent report, the fungal endophytic communities asso-
 ciated with Hevea brasiliensis (rubber tree, Euphorbiaceae) were
 characterized in leaf and sapwood fragments (Gazis and Chaverri,
 2010; Chaverri and Gazis, 2011; Chaverri, Gazis, and Samuels,
 2011; Gazis, 2012; Unterseher et al., 2013; Martin et al., 2015), but
 not directly in latex. Among more than 2500 microbial isolates ob-
 tained from 190 individual trees, more than 700 operational taxo-
 nomie units (OTUs) were found, suggesting a high diversity of
 species (Gazis, 2012). Endophytic bacteria also are ubiquitous in
 plants and can form a range of different relationships with their
 hosts (Ryan et al, 2008). However, accounts of microbial communi-
 ties in plant latex are scarce. Over a century ago, flagellate protozoa
 were found to inhabit Euphorbia latex and act as endobiotic patho-
 gens (Lafont, 1909; Franchini, 1922a-c). Early studies on the latex
 of Pedilanthus tithymaloides Poit. (Euphorbiaceae) revealed abun-
 dant bacteria, although the communities were not characterized
 and whether the bacteria were pathogenic or beneficial was unclear
 (Picado, 1921). No recent studies have characterized the bacterial
 and fungal communities in Euphorbia latex.

 Two separate observations motivated the present investigation
 of the possibility that Euphorbia latex could contain microbial
 communities. First, a rare specimen of E. mandravioky Leandri at
 the Fullerton Arboretum suddenly became diseased and eventually
 died, prompting a search for the (potentially microbial) cause. Sec-
 ond, tissue culture experiments in our laboratories using specimens
 from the extensive Euphorbia collection at the Huntington Botani-
 cal Gardens consistently were accompanied by microbial growth,
 while the controls remained sterile, ruling out the possibility of
 contamination. These observations led us to hypothesize that mi-
 crobial communities of low phylogenetic diversity are harbored in
 Euphorbia latex, despite its composition and supposed protective
 function. The objective of the current investigation was to test this
 hypothesis by analyzing the microbial diversity in latex from a vari-
 ety of Euphorbia species using both preliminary cultivation and
 deep sequencing approaches.

 MATERIALS AND METHODS

 Sampling sites- Latex samples were collected from Euphorbia plants
 in cultivation at The Huntington Botanical Gardens (San Marino,
 California, USA [CA], 34°7.636N, 118°6.624W), with the exception
 of a single sample that was collected at The Fullerton Arboretum
 (Fullerton, CA, 33°53.238N, 1 17°52.992W). The climate at The Hun-
 tington is type Csa (dry summer type) according to the classification
 of Koppen (1948), with an average temperature of 24.9°C and an
 average annual rainfall of 0.51 m (http://wrcc.dri.edu/wrccpub/).

 Sample collection- Latex from two individuals of Euphorbia man-
 dravioky was collected aseptically: (1) a parent tree planted in the
 ground at the Fullerton Arboretum; and (2) a rooted cutting grow-
 ing in pot located at the Huntington Botanical Gardens (Fig. 1). The
 collection site on the plant was cleaned thoroughly with a sterile
 alcohol swab and an incision made with a presterilized surgical
 knife. The white, opaque latex that beaded at the incision was aspi-
 rated into a sterile micropipette tip and dispensed into a sterile mi-
 crofuge tube. Samples were stored and transported on ice (4°C).

 Isolation of bacteria and fungi- Latex samples were inoculated
 into the following liquid media: minimal medium (Baum et al.,
 2009) and Terrific Broth (TB) (22711-022, Life Technologies,
 Grand Island, NY). Samples were incubated at 30°C, 150 rpm for
 48 h. Samples from the TB cultures were subcultured at 35°C on
 Sabouraud agar (SA) plates (R01760, Thermo Fisher Scientific,
 Waltham, Massachusetts, USA) selective for fungi.

 DNA isolation, 18S and 16S rRNA gene sequencing, and sequence
 analysis of isolates- Ce lis of the microbe (100 mg of the colonies
 transferred from the agar plate) were suspended in sterile phos-
 phate-buffered saline (PBS, lx, 100 μί), flash-frozen using liquid
 nitrogen, and macerated with a micropestle for 10 s. Genomic mi-
 crobial DNA was extracted from the resulting lysis solutions us-
 ing the MasterPure DNA Purification kit (Epicentre, Madison,
 WI, USA) according to the manufacturer's instructions. PCR
 amplification was carried out with BMB-'A' and BMB-'B' primers
 (Vilgalys, 2015) for the fungal small subunit (SSU) 18S rRNA gene.
 Universal bacterial primers (1369F/1492R) (Suzuki et al., 2000)
 were employed for SSU 16S rRNA gene amplification using Premix
 Ex Taq (TaKaRa, Shiga, Japan). Gene fragments were amplified us-
 ing a MyCycler thermal cycler (Bio-Rad Laboratories, Hercules,
 CA). The PCR conditions (Gunawardana et al., 2014) consisted of
 an initial denaturing step of 94°C for 2 min; followed by 7 cycles of
 94°C for 30 s, 48°C for 30 s, and 72°C for 1 min, 28 cycles of 94°C
 for 30 s, 58°C for 30 s, and 72°C for 1 min; and a final elongation
 step of 72°C for 10 min. Replicate reactions were pooled, and the
 amplicons were separated by electrophoresis on 1.0% agarose gels.
 The amplicons were purified using QIAquick Gel Extraction kit
 (Qiagen, Valencia, CA) according to manufacturer's instructions.

 Sanger sequencing of the above amplicons was carried out on
 an Applied Biosystems 3730 DNA Analyzer (Life Technologies,
 Carlsbad, CA) at the City of Hopes Integrative Genomics Core
 (Duarte, CA). Sequences were aligned to the NCBI BLAST nucleo-
 tide collection (NCBI, National Institutes of Health, Bethesda,
 Maryland, USA; http://blast.ncbi.nlm.nih.gov/Blast.cgi) using the
 discontiguous MEGABLAST program to determine the identity
 of the isolates.

 Sample processing, microbial DNA isolation and amplification,
 and sequencing of 16S rRNA and ITS gene amplicons- Latex (0.2-
 0.5 mL, typically one collection per plant per time) was collected as
 described from 38 Euphorbia species (one individual of each), rep-
 resenting a broad phylogenetic sampling of the genus (see Appen-
 dix 1). The plants sampled were from indoor (container) and
 outdoor (ground) sites at The Huntington Botanical Gardens and
 the Fullerton Arboretum. Samples were transported and stored at
 4°C before processing. DNA was extracted from latex samples us-
 ing the PowerSoil DNA Isolation Kit (MO BIO Laboratories, Carls-
 bad, CA) according to the manufacturer's instructions. Sample
 contamination from the kit was not a concern given the high
 amounts of biomass extracted (average yield 1.2 μg total DNA,
 0.2-2.0 μg range, from 0.2-0.5 mL of latex) (Salter et al., 2014;
 Weiss et al., 2014); see also below for more detailed discussion.

 The V4 hypervariable region of the bacterial 16S rRNA gene was
 amplified and sequenced using the validated, region- specific bacte-
 rial/ archaeal primers 515F and 806R according to previously de-
 scribed methods (Caporaso et al., 2012; Ursell et al., 2014) optimized
 for the Illumina MiSeq platform. For fungi, the internal transcribed
 spacer (ITS) region 1 of nuclear DNA was targeted using ITS1-F
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 figure ι Isolation of microorganisms from the latex of Euphorbiaceae. (A) Diseased Euphorbia mandravioky parent. (B) Healthy Euphorbia mandrav-
 ioky offspring. (C) Liquid medium after inoculation with plant latex from offspring: (i) Terrific Broth (TB) medium, control "inoculated" with an unused

 (sterile) pipette tip; (ii) minimal medium is clear (= no microbial growth), and (iii) TB medium is turbid (= microbial growth). (D) Microbial growth after

 latex from healthy offspring of E. mandravioky was added to Terrific Broth (TB) medium and the resulting culture was streaked onto fungi-selective

 Sabourand agar to isolate single colonies (arrows). (E) Fungal spores entwined in a network of external hyphae were observed by light microscopy
 using a methylene blue stain (scale bar, 100 μιτι).

 ( CTT GGT C ATTT AG AGG AAGT A A) and ITS2 (GCTGCGTTC-
 TTCATCGATGC) (Bellemain et al., 2010) as the forward and
 reverse primers, respectively. Although the reverse primer is
 named aITS2", it amplifies the ITS1 region, not ITS2, i.e., a subset
 flanked by ITS1-F and ITS2 (Bellemain et al., 2010). 5'-Barcoded

 amplicons were generated in duplicate using Premix Ex Taq
 (TaKaRa) and a MyCycler thermal cycler (Bio-Rad Laboratories).
 The PCR conditions consisted of an initial denaturing step of 94°C
 for 2 min; followed by 7 cycles of 94°C for 30 s, 48°C for 30 s, and
 72°C for 1 min; 28 cycles of 94°C for 30 s, 58°C for 30 s, and 72°C for
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 1 min; and a final elongation step of 72°C for 10 min. Negative
 controls were included to identify environmental contamination
 (Salter et al., 2014; Weiss et al., 2014). Replicate reactions were
 pooled, and the amplicons were separated by electrophoresis on
 1.0% agarose gels. The amplicons were purified using QIAquick Gel
 Extraction kit (Qiagen) according to manufacturer's instructions.
 The A260: A280 absorbance ratio was acquired with a SpectraMax Plus
 Absorbance Microplate Reader (Molecular Devices, Sunnyvale,
 CA, USA) and used as an indicator of DNA purity. Amplicon DNA
 was quantified using the Quant-iT PicoGreen dsDNA Assay Kit
 (Life Technologies). Samples (100 ng) from 35 bacterial and 30 fun-
 gal amplicons were pooled (of the 38 individuals, three did not
 yield bacterial and eight did not yield fungal amplicons) and fur-
 ther purified with the UltraClean PCR Clean-Up Kit (MO BIO
 Laboratories). The purified, pooled samples (A260:A280 ratio of 1.70
 for bacterial and 1.77 for fungal amplicons) were quantified (75.2
 ng^L-1 for 16S rRNA gene amplicons and 71.3 ng^L-1 for ITS gene
 amplicons) using Quant-iT PicoGreen dsDNA Assay Kit and were

 figure 2 Rarefaction curves constructed on the number of bacterial operational taxonomie units
 (OTUs) detected in Euphorbia plant latex at a depth of 1 1 7 (A) and 1 088 (B) reads per sample. As the

 number of sequences per sample increased, the number of detected OTUs increased at different
 rates for different samples. The plateau indicates when the majority of the bacterial community
 richness and diversity has been captured. The plateau observed for each of the lines in (B) indicates

 that much of the diversity of the bacterial community has been captured at a sequencing depth of
 1 000 reads.

 submitted for sequencing using the MiSeq platform (Illumina, San
 Diego, CA) at the Advanced Genomics Facility, University of Colo-
 rado, Boulder. Each set of bacterial and fungal amplicons was se-
 quenced as a dedicated lane per run using a paired-end, 2 x 150-bp
 strategy. The reads were not stitched together because the quality
 falls off significantly toward the end of the read, causing paired
 reads to be truncated at or before the stitch point during quality
 trimming. The sequence data have been submitted to the European
 Molecular Biology Laboratory European Bioinformatics Institute
 (EBI) under the EBI accession number ERP0 10423.

 Microbial sequence analysis- The 16S rRNA and ITS gene se-
 quences obtained from the MiSeq platform were processed through
 the open source software pipeline Quantitative Insights Into Micro-
 bial Ecology (QIIME) version 1.7.0-dev (Caporaso et al., 2010).
 Sequences were quality filtered (-p, default; -r, default; -q, 19) using
 established guidelines (Bokulich et al., 2013). Quality-filtered reads
 were demultiplexed, yielding 1 1 876 513 16S and 6674 ITS sequences.

 Bacterial sequences were binned into
 operational taxonomie units (OTUs) based
 on 97% identity using the UCLUST algo-
 rithm (Edgar, 2010) against the Green-
 genes reference database (McDonald et al.,
 2012) May 2013 release. The representative
 sequences for each OTU were compared
 against the Greengenes database for taxo-
 nomie assignment.

 The OTU table was filtered at a minimum

 fraction of 0.0005 to remove noise from

 sequencing error, resulting in 10 399 347
 reads, with an average of 253 642 reads per
 sample (maximum 550256 reads; mini-
 mum 37 reads). This filtering step removes
 spurious OTUs, such as chimera forma-
 tion during PCR or sequencing errors. The
 expected rate of these errors is low, so a
 filter value was chosen to remove those "low

 abundance" taxa that are likely spurious
 and not true representatives of biological
 diversity. In most samples, the majority of
 taxa were classified as chloroplast, while do-
 main Archaea was detected in one sample at
 a relative abundance of 1%. A large number
 of reads corresponded to Rickettsials and /
 or mitochondria, which could not be distin-

 guished conclusively. Filtering out these
 taxa (i.e., host contamination) resulted in 9
 samples from different Euphorbia species
 that each had more than 1000 reads. Two

 strategies were adopted to analyze these
 data sets in an effort to maximize sampling
 depth and the number of samples included
 in downstream analyses. One approach was
 more robust and removed all samples with
 fewer than 1000 reads. The second approach
 was less robust, but conserved more data,
 and included all samples with at least 100
 reads. With this compromise, the OTU
 table was rarefied to two levels: (1) 1088
 reads per sample (9 samples); and (2) 117
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 reads per sample (17 samples). The thresholds were chosen on the
 basis that they correspond to the lowest number of reads in any
 one sample that was equal to or above the chosen cutoff of either
 1000 or 100 reads.

 Fungal OTUs were selected using an open-reference approach
 against the May 2013 release (developer version) of the UNITE da-
 tabase (https://unite.ut.ee; Kõljalg et al., 2013). UCLUST (Edgar,
 2010) was employed as the clustering algorithm with the optimized
 parameters and open-reference workflow described by Rideout
 et al. (2014). Open-reference OTU picking acts as a combination of
 closed-reference and de novo OTU picking. First, sequences were
 clustered against the reference database, and any sequences that did
 not cluster were not discarded because they are used during the
 closed-reference workflow. Instead, they were clustered de novo
 against each other and included in the final OTU map. The approach
 ensures that biologically significant diversity is not lost due to non-
 existence in the reference databases and is particularly important for
 some data sets because lesser-studied environments likely contain a
 considerable proportion of novel taxa. The open-reference fungal
 OTU table was filtered at a minimum fraction of 0.0005 as done

 earlier, resulting in 5520 reads with an average of 157 reads per
 sample (maximum 426 reads; minimum 1 read). The OTU table
 was then rarefied to a depth of 98 reads per sample (22 samples
 total) and used for downstream analysis. We speculate that host
 contamination, as with the bacterial sequences discussed, was re-
 sponsible for the high proportion of discarded reads.

 The number of OTUs detected in each sample, i.e., richness, was
 calculated for both the bacterial and fungal communities. The phy-
 logenetic diversity of the bacterial samples was assessed using the
 phylogenetic whole tree metric (Faith, 1992). Unlike taxonomically
 based metrics, which assume a star phylogeny where all taxa are
 equidistant from the tree center, phylogenetic metrics conserve
 true branch lengths on the phylogenetic tree.

 The metric unweighted UniFrac (Lozupone et al., 2011) was
 used to calculate distances between samples based on the fraction
 of shared branch length between any two bacterial communities on
 the bacterial phylogenetic tree (McDonald et al., 2012). Principal
 coordinate analysis (PCoA) plots then were constructed from
 the distance matrices and interactively visualized using the on-
 line tool EMPeror (Vázquez-Baeza et al., 2013) to identify sample
 groupings. No fungal phylogenetic tree currently accompanies the

 figure 3 Rarefaction curve constructed on the number of fungal OTUs detected in Euphorbia
 plant latex samples calculated at a depth of 98 reads per sample.

 UNITE database. Therefore, the Bray-Curtis method, which does
 not use a phylogenetic tree, was employed to construct distances
 matrices for fungal communities (Navas-Molina et al., 2013). Data
 were visualized by PCoA similarly to bacterial data. Principal coor-
 dinate analysis was used to compare the clustering of microbial
 communities across samples with the goal of identifying associa-
 tions between the latex microbiomes and environment (locality and
 growing conditions), plant height, plant age, original source type
 of the plant, form of propagation, geographic origin of the plant,
 indoor and outdoor container plant.

 Heatmaps were constructed using QIIME to visualize the abun-
 dance distributions in individual samples of the OTUs with the
 highest sequence representation. Reads were filtered out of the
 OTU tables according to the following parameters: bacterial com-
 munities, all OTUs with fewer than 30 reads (OTU table rarefied to
 117 reads per sample), or 100 reads (OTU table rarefied to 1088
 reads per sample); fungal communities, all OTUs with fewer than
 30 reads.

 Data sets were compared using the ANOSIM and PERMANOVA
 methods in the program QIIME (Caporaso et al., 2010), which spe-
 cifically wraps around R and uses the vegan and ape packages to
 compute the statistics, with 999 permutations each. ANOSIM di-
 rectly tests sample groupings rather than the variation of distances
 within/between sample groupings (PERMANOVA). These ap-
 proaches therefore are complementary (QIIME, 2015).

 RESULTS

 Isolation of fungal and bacterial organisms from E. mandravioky
 latex- One bacterial species from latex collected from diseased and
 one fungal species from healthy E. mandravioky individuals were iso-
 lated (Fig. 1). Latex from the parent plant only yielded microbial
 growth in TB, while latex from the offspring plant afforded microbial
 growth in TB and on SA. Nothing grew on the minimal medium. The
 fungal isolate could not be identified based on sequence analysis; Py-
 renophora teres (strain 0-1) was the best match (BLAST similarity,
 68%; query cover, 82%; E-value 8.0 x 10"17; accession XM 003297539. 1 ).

 The Gram-positive, rod-shaped bacterial isolate was identified
 as Bacillus amyloliquefaciens (BLAST similarity, 100%; query cover,
 100%; E-value 2.0 x 10~179; accession KT368090.1). We suspected

 that the bacterium could have originated from
 the organic mulch, but attempts to isolate this
 organism from hay samples collected around
 the plant were unsuccessful. An important
 producer of α-amylase and protease (Priest
 et al., 1987), Β. amyloliquefaciens has been iso-
 lated from soil infested with plant pathogens
 where it produces extracellular phytases be-
 lieved to promote plant growth, especially
 during phosphorous limitation (Idriss et al.,
 2002). Plant-associated, beneficial B. amy-
 loliquefaciens produces potent antibiotics
 (Arguelles-Arias et al., 2009; Alvarez et al.,
 2012; Yuan et al., 2012; Ji et al., 2013; Tanaka
 et al., 2014), providing protection from phy-
 topathogenic fungi (Danielsson, Reva, and
 Meijer, 2007; Arguelles- Arias et al., 2009) and
 bacteria (Lanna et al., 2013). It is not evident
 what ecological role this organism played in
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 figure 4 Heatmaps showing the bacterial community composition in Euphorbia plant latex sam-
 ples rarefied to (A) 1 17 and (B) 1088 reads per sample. The y-axis denotes individual OTUs; thex-
 axis identifies the Euphorbia plant source of these bacteria. All taxa consist of genera, but not all
 received a genus-level classification. The names of these taxa are not italicized and are classified
 by their family or in the case of Sphingomonadales, by their order. The color key in the legend
 indicates relative abundance.

 the latex of the diseased plant, nor what other factors (e.g., growth
 environment, age) contributed to shaping the different latex micro-
 biomes in the two plants.

 Diversity of microbial communities in Euphorbia latex by deep
 sequencing of taxonomically informative genes- The species rich-
 ness and phylogenetic diversity of the bacterial communities in Eu-

 phorbia plant latex were relatively high given
 the composition of the sampled environment:
 richness, 44.0 ± 29.0 (average number of spe-
 cies per plant ± SD); phylogenetic diversity,
 4.46 ± 2.28 (average phylogenetic diversity ±
 SD). The richness of the fungal communities
 was also relatively high at 20.9 ± 5.58 (average
 number of species per plant ± SD). There was
 considerable variability in microbial richness
 and diversity across the samples, with many
 species and high community evenness in
 some samples and lower values in others
 (Figs. 2, 3). Hereafter, "sample" refers to latex
 from an individual Euphorbia plant. At a se-
 quencing depth of 117 reads per sample, the
 bacterial species richness was underestimated
 based on the rarefaction analyses (Fig. 2A).
 However, the plateau observed for each of the
 lines in Fig. 2B indicates that much of the di-
 versity of the bacterial communities has been
 captured at a sequencing depth of 1000 reads.
 The complexity of the bacterial communities
 varied significantly, with the latex of some
 plants containing fewer than 10 OTUs (e.g., E.
 denisii and E. capsaintemariensis) and others
 containing more than 60 (e.g., E. espinosa and
 E. atrispina). The same trend was observed
 through the phylogenetic whole tree metric
 (data not shown). Most of the fungal diversity
 associated with Euphorbia latex was not cap-
 tured at a sequencing depth of 98 reads per
 sample, as indicated by the rarefaction plots
 (Fig. 3). This result is not surprising because
 filtering out low-quality reads removed most
 of the fungal reads (see Materials and
 Methods).

 Classification of microbiota in Euphorbia
 latex- Overall, the distribution of taxa in
 representative samples of Euphorbia latex
 was heterogeneous. These results are based
 on the hierarchically clustered heatmap
 analysis of the bacterial (Fig. 4) and fungal
 (Fig. 5) community profiles. Species from
 the bacterial family Shewanellaceae were the
 most common taxa across samples (Fig. 4),
 while a number of fungal taxa, classified to
 different taxonomie levels, from phylum to
 species, were common to most samples ana-
 lyzed (Fig. 5). The UNITE database used
 here to classify the fungal taxa could lead to
 biases in the analysis because the database
 focuses largely on Basidiomycota. In future

 studies, BLAST searches using fungal sequences will be carried
 out against a database with a higher representation of Ascomy-
 cota, found to be the dominant fungal endophytes in planted
 and wild rubber trees ( Hevea brasiliensis) (Gazis, 2012; Unterseher
 et al., 2013). However, the results will need to be interpreted with
 the caveat that BLAST searches on small gene segments can be
 misleading.
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 figure 5 Heatmap showing the fungal community composition in Euphorbia plant latex sam-
 ples rarefied to 98 reads per sample. The y-axis denotes individual OTUs; the x-axis identifies the
 Euphorbia plant source of these fungi. All taxa consist of genera, but not all received a genus-
 level classification. The names of these taxa are not italicized and are classified by their family (f),

 order (o), class (c)f or phylum (p)/lncertae sedis" refers to a taxon that could not be classified with

 certainty. The color key in the legend indicates relative abundance.

 Associations between microbial community composition and
 plant environment could provide clues on how the latex microbi-
 omes are assembled. However, no significant clustering patterns were
 observed by PCoA as a function of the parameters listed in Appen-
 dix 1, among others (data not shown). However, Fig. 6 A shows qual-
 itatively modest clustering of bacterial communities based on their
 environment (i.e., garden, greenhouse, and nursery), and this clus-
 tering pattern is more apparent for fungal communities (Fig. 7).
 Fungal microbial communities detected in the latex of plants located
 in the garden and greenhouse environment appear uniformly dis-
 tributed; however, about half of the samples from plants located in
 the nursery environment cluster separately from garden or green-
 house samples. Plant environment was determined to be a weakly
 significant driver of sample clustering (ANOSIM, R = 0.18 and Ρ =
 0.02; PERMANOVA, pseudo-F = 1.46 and Ρ = 0.05) and may play a
 role in the transmission of bacteria and fungi between plants.

 DISCUSSION

 Results from our previous cultivation studies led us to hypothesize
 that the latex of Euphorbia plants commonly harbors microbial
 communities and that the species richness may be low because they
 inhabit an environment presumed to be antimicrobial. The hypoth-
 esis was tested in a culture-independent study using latex sampled
 from 38 species of Euphorbia representative of the geographic ori-
 gin before collection and phylogenetic distribution of the genus
 (see Appendix 1). These studies suggest that our original hypothesis
 is incorrect. The microbial phylogenetic diversity in the studied
 samples was surprisingly high, especially in select plants (Figs. 2, 3).

 The wide range in diversity suggests that a
 number of factors not studied here could in-

 fluence the complexity of the bacterial and
 fungal communities found in Euphorbia
 latex.

 The latex samples contained a broad range
 of polymicrobial communities (Figs. 4, 5)
 whose ecological roles remain to be eluci-
 dated. Members of the family Shewanellaceae
 represented the most commonly detected
 bacterial taxa across all analyzed plant speci-
 mens (Fig. 4), an unexpected result because
 these γ-proteobacteria are not typical repre-
 sentatives of plant microbiomes. Shewanella
 generally are thought of as marine and fresh-
 water organisms (Dikow, 2011), with the
 uncommon ability to use heavy metals as
 electron acceptors in certain respiratory situa-
 tions. Shewanella also have been isolated from

 other, diverse habitats, including clinical spec-
 imens, meats, butter, marine algae and inver-
 tebrates, fish, and even sea ice (Bowman,
 2005). Many of the other taxa identified con-
 sistently across samples are putative plant en-
 dophytes, providing a rational basis for their
 presence in Euphorbia latex. The latex of many
 Euphorbia plants contained bacterial groups
 that have been shown in symbiotic associations
 with fungal endophytes in plant root systems,
 such as Bradyrhizobium sp. (Ruizlozano and

 Azcon, 1993; Chaintreuil et al., 2000; Okubo, Fukushima, and
 Minamisawa, 2012; Mason et al., 2015; Subramanian et al., 2015)
 and Enterobacter sp. (Nair and Padmavathy, 2014). These diazotro-
 phic bacteria can contribute to nitrogen fixation, promoting nutri-
 tion and growth of the host plant (Zhang et al., 2011; Madhaiyan
 et al., 2013; Terakado-Tonooka, Fujihara, and Ohwaki, 2013;
 Nimnoi, Pongsilp, and Lumyong, 2014; Teamtisong et al., 2014),
 including members of the Euphorbiaceae (Dieng et al., 2015).

 Most of the fungal taxa identified in Euphorbia latex (Fig. 5) be-
 long to the class Dothideomycetes, a diverse clade of pathogenic,
 endophytic, and saprotrophic Ascomycota (Hyde et al., 2013). En-
 dophytic Dothideomycetes are commonly found in healthy plant
 tissue (e.g., Arnold and Lutzoni, 2007; Albrectsen et al., 2010; Gāzis
 and Chaverri, 2010; Gazis, 2012; Massimo et al., 2015; Xiong et al.,
 2015). Taxa observed here, including A ureobasidi um pullulans and
 Cladosporium spp., have been isolated from the tissue of a broad
 range of plants (Nair and Padmavathy, 2014) including the cactus
 Cereus jamacaru (Bezerra et al., 2013) and Cocos nucífera and Vitis
 labrusca in hypersaline environments (de Oliveira et al., 2014). The
 diversity, antifungal/ antimicrobial activity, and potential applica-
 tions of fungi such as A. pullulans , Alternaria spp., and Cladospo-
 rium spp. are widely known, and strains known from various plant
 species may produce secondary metabolites with entomopatho-
 genic properties (see Schena et al., 2003; Suryanarayanan, Wittlinger,
 and Faeth, 2005; Miles et al., 2012; Pancher et al., 2012; Polizzotto
 et al., 2012; Thakur et al., 2013; Wang et al., 2013; Kaur et al., 2015;
 Silva-Hughes et al., 2015; Soltani and Moghaddam, 2015). How-
 ever, these fungal endophytes are not always beneficial to their
 plant host. For example, some Alternaria species are notoriously
 destructive plant pathogens (Lawrence et al., 2008).
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 figure 6 Unweighted UniFrac distances, using closed-reference OTU pick-

 ing, plotted in principal coordinate analysis (PCoA) space to compare the
 bacterial communities in Euphorbia latex with (A) 117 and (B) 1088 reads

 per sample. Each sphere represents a single microbial community, and the
 spheres are color-coded based on plant environment. Numbers in paren-
 theses in the legends indicate the number of plants in each group.

 It is unclear what factors determine the assembly of the resident
 microbiota in Euphorbia plant latex. Horizontal transmission of air-
 borne microbes is a plausible mechanism for a number of the taxa
 observed here (Fig. 5). Aerobiological studies frequently identify
 spores from the fungi A. pullulane (Punnapayak et al., 2003), Alter-
 naria spp. (Recio et al., 2012; de Aldana, Bills, and Zabalgogeazcoa,
 2013; Lee and Liao, 2014; O'Connor et al., 2014; Ben Sidei et al.,
 2015; Kasprzyk et al., 2015), and Cladosporium spp. (Recio et al.,
 2012; de Aldana, Bills, and Zabalgogeazcoa, 2013; Lee and Liao,
 2014; O'Connor et al., 2014; van Kampen et al., 2014) in air samples
 collected across the globe. The latex microbes also could originate
 from water, soil, and litter through currently unknown mechanisms
 of entry. Insects are known to mediate horizontal transfer of mi-
 crobes between plants. Phytomonas species, flagellate protozoa
 known for over 100 yr to inhabit Euphorbia latex (Lafont, 1909,
 1910), are transferred between plants by various insect vectors
 (Harvey and Lee, 1943; Troll, 1973; Dollet, 1984; Jaskowska et al.,
 2015). The whitefly Bemisia tabaci transfers Rickettsia spp. to the
 plant, where they move inside the phloem and can be acquired by
 other whiteflies (Caspi-Fluger et al., 2012). Interestingly, symbiotic,
 gut-associated bacterial taxa from the Enterobacteriales (Fig. 4A)
 and Neisseriaceae (Fig. 4B) recently were isolated from honey bees
 and bumble bees (Kwong and Moran, 2013; Saraiva et al., 2015).
 These findings suggest a possible insect-driven transfer to Euphor-
 bia latex, although the mechanism of transfer has yet to be elucidated.

 figure 7 Unweighted UniFrac distances, using open-reference OTU
 picking, plotted in principal coordinate analysis (PCoA) space to com-
 pare the fungal communities in Euphorbia latex with 98 reads per sam-
 ple. Each sphere represents a single microbial community, and the
 spheres are color-coded based on plant environment. Numbers in pa-
 rentheses in the legend indicate the number of plants in each group.

 Vertical transmission of microorganisms from mother plant to
 offspring via seeds or pseudo-vertical transfer during vegetative
 propagation cannot be ruled out (Truyens et al., 2015). For example,
 fungal endophytes from the genus Alternaria and Cladosporium
 (Fig. 5) recently have been shown to be transmitted vertically in
 forbs, likely through fungal growth in the pollen tube as the mode
 of entry into the developing seed (Hodgson et al., 2014). Vertical
 transfer would lead to some retention of the microbial signature
 through time. The relative contributions of these various transmis-
 sion routes are difficult to unravel, particularly in an exploratory
 study as presented here. No clear associations were observed be-
 tween microbial community and indicator metadata such as geo-
 graphic origin of the plant. However, a weak association was
 observed between the microbial community composition of the la-
 tex and the plant-housing environment (Figs. 6, 7), suggesting that
 it may have a role in shaping the latex microbial ecosystem.

 The unexpected microbial diversity in Euphorbia plant latex
 suggests these microbes play unrecognized roles in the host, such as
 maintenance of health status, and merit further investigation. Our
 results are a first step toward elucidating the microbial ecology of
 this highly unusual niche.
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